Synthesis and Properties of New Perfluorinated Aliphatic Isocyanides

Burkhard Krumm, Robert L. Kirchmeier,* and Jean'ne M. Shreeve

Department of Chemistry, University of Idaho, Moscow, Idaho 83844-2343

Received December 28, 1994

Although the first fluorinated isocyanide, $CF_3N \equiv C$, was first synthesized in 1967,¹ synthesis of other fluorine-containing analogues and, in particular, a study of their chemistry has occurred only in more recent years. This chemistry has been recently reviewed.² Known perfluorinated isocyanides include $CF_3N \equiv C$, $C_6F_5N \equiv C$,³ $SF_5N \equiv C$,⁴ and $CF_2 = CFN \equiv C$.⁵

 α -Dehalogenation of the corresponding dibromomethanimine (by using Mg in THF) gives rise to CF₃N=C in excellent yield but to much lower yields of C₆F₅NC and SF₅NC.^{3,4} Vacuum pyrolysis at 240 °C of CF₂=CFNCCr(CO)₅ leads smoothly to CF₂=CFNC.² All of these isocyanides are very unstable compounds which tend to decompose at relatively low temperatures to form polymeric materials.^{2,6}

We find that the defluorination of perfluoroazaalkenes with Ph₃P not only provides a more straightforward route to the previously known CF₃N \equiv C, but also allows the synthesis of the previously unknown higher homologues C₂F₅N \equiv C (1) and C₃F₇N \equiv C (2). The synthesis of the precursors used in our method, R_fN=CF₂,^{7.8} requires fewer steps, and the production of the isocyanides does not require the use of a solvent.⁹

The previously described route to $CF_3N=C$ required the conversion of $CF_3N=CF_2$ into the dibromomethanimine $CF_3N=CBr_2$ via a three step synthesis which was achieved by the utilization of BBr_3 .¹⁰

Results and Discussion

The ease of synthesis of perfluoroazaalkenes^{7,8} makes this family of compounds attractive precursors to a large number of interesting materials.

$$CICN + SF_{4} + CsF \xrightarrow{160 \circ C} CF_{3}N = SF_{2}$$

$$CF_{3}N = SF_{2} + 2CIF \xrightarrow{-SF_{4}} CF_{3}NCl_{2}$$

$$CF_{3}NCl_{2} + CF_{2} = CFCl \xrightarrow{70 \circ C} CF_{3}N(Cl)CF_{2}CFCl_{2}$$

$$CF_{3}N(Cl)CF_{2}CFCl_{2} \xrightarrow{h\nu} CF_{3}N = CF_{2}$$

For the higher homologues, the perfluoroalkyl nitriles are commercially available. In the synthesis, the alkyl chain length

- (3) Lentz, D.; Graske, K.; Preugschat D. Chem. Ber. 1988, 121, 1445.
 (4) Thrasher, J. S.; Madappat, K. V. Angew. Chem., Int. Ed. Engl. 1989.
- 28. 1256.
 Lentz, D.; Preugschat, D J. Chem. Soc., Chem. Commun. 1992, 1523.
- (6) Banks, R. E.; Haszeldine, R. N.; Stevenson, M. J.; Willoughby, B. G.

J. Chem. Soc. C 1969, 2119.

is increased by one CF₂ unit.

$$R_{f}CN + 2CIF \rightarrow R_{f}CF_{2}NCl_{2}$$

$$R_{f}CF_{2}NCl_{2} + CF_{2} = CFCl \xrightarrow{70 \circ C} R_{f}CF_{2}N(Cl)CF_{2}CFCl_{2}$$

$$R_{f}CF_{2}N(Cl)CF_{2}CFCl_{2} \xrightarrow{h\nu} R_{f}CF_{2}N = CF_{2}$$

$$R_{f} = CF_{3}, C_{2}F_{5}$$

The high phosphorus-fluorine bond energy renders triphenylphosphane a superb defluorinating reagent. We have used this reagent to provide a simpler route to isocyanides, e.g.

$$CF_3N = CF_2 \xrightarrow{-Ph_3P} CF_3N = CF_3N$$

The IR and 19 F NMR spectral data obtained agree with the literature.¹⁰ Similarly the higher homologues are converted to isocyanides 1 and 2.

$$C_2F_5N = CF_2 \xrightarrow{+Ph_3P}_{-Ph_3PF_2} C_2F_5N = C + CF_3CF = NCF_3$$

(1) 20% 80%

$$C_{3}F_{7}N = CF_{2} \xrightarrow{+Ph_{3}P} C_{3}F_{7}N = C + C_{2}F_{5}CF = NCF_{3}$$

(2) 40% 60%

The yields of 1 and 2 are markedly impacted by the isomerization of their precursors which is catalyzed irreversibly by the presence of fluoride ion. These compounds are characterized by comparison with IR and ¹⁹F NMR spectral data given in the literature.¹¹ This isomerization still occurs even when the experimental conditions are changed by using solvents such as acetonitrile or benzonitrile or by carrying out the reaction at lower temperatures.

For the new isocyanides, the IR spectra show absorption bands for the isocyanide stretching frequency at 2120 cm⁻¹ for 1 and 2114 cm⁻¹ for 2 compared with 2127 cm⁻¹ for CF₃N=C. The ¹⁹F resonances for the CF₂ group bonded to N=C show the characteristic line-broadening from coupling to ¹⁴N which is normally observed for isocyanides. The CF₂ groups in CF₃-CF₂NC at -91.0 ppm and in CF₃CF₂CF₂NC at -87.1 ppm, appear as triplets (²J_{F-N} = 13 Hz). The mass spectrum of both compounds shows M⁺.

The stabilities of 1 and 2 are similar to that of $CF_3N=C$. When stored at temperatures above -78 °C, decomposition occurs to form a nonvolatile oil. At +25 °C either neat or in solution with nonpolar, noncoordinating solvents, oligomerization occurs readily. However, solutions of the isocyanides in polar solvents, such as acetonitrile or benzonitrile, are stable at 25 °C for several hours.

- (10) Lentz, D. J. Fluorine Chem. 1984, 24, 523.
- (11) Haas, A. Gmelin Handbook of Inorganic Chemistry, 8th ed.; Koschel, D., Ed.; Springer-Verlag: Berlin. Heidelberg, Germany, and New York, 1981; Part 9.

© 1995 American Chemical Society

Makarov, S. P.; Englin, M. A.; Videiko, A. F.; Nikolaeva, T. V. Zh. Obshch. Khim. 1967, 37, 2781.

⁽²⁾ Lentz, D. Angew. Chem., Int. Ed. Engl. 1994, 33, 1315.

⁽⁷⁾ Sarwar, G.; Kirchmeier, R. L.; Shreeve, J. M. Inorg. Chem. 1989, 28, 2187.

⁽⁸⁾ Chen, Y.; Patel N. R.; Kirchmeier R. L.; Shreeve J. M. Inorg. Chem. 1992, 31, 4917.

⁽⁹⁾ Krumm, B.; Kirchmeier, R. L.; Shreeve, J. M. Presented at the ACS Eleventh Winter Fluorine Conference, St. Petersburg, FL, 1993; Abstr. No. P78.

The isocyanides react with oxidizing agents to give the following products as colorless liquids in 90-95% yield.

These reactions are complete after warming the mixture slowly from -196 °C to room temperature. No reaction takes place with iodine or (CF₃)₂NCl because of their lower oxidizing strength. Because ClF is a powerful oxidizer, it was not possible to isolate the 1:1 addition product C₃F₇N=CFCl. In all other reactions we observe a 1:1 addition. Even with excess reagent, no *N*-chloroamines are formed. Similar behavior is reported for the reaction between perfluorinated nitriles and hypochlorites,¹² although further reaction occurs at elevated temperatures. The new products are characterized by IR, ¹⁹F NMR, and mass spectroscopy. The isocyanate C₃F₇NCO was identified by comparison with literature data.¹¹

Experimental Section

Materials. The chemicals Ph₃P, Cl₂, Br₂, and I₂ (Aldrich Chemical Co. Inc.); CICN (Solkatronic Chemicals Inc.); CIF and SF₄ (Atochem North America); CF₃CN, C₂F₅CN, and CF₂=CFCl, COF₂ (PCR) were purchased and used as received. The compounds (FSO₂)₂O₂ and (CF₃)₂CO are gifts from Professor Felix Aubke and Central Glass Ltd. The reagents (CF₃)₂NCl, CF₃OCl, (CF₃)₃COCl, and SF₅OCl are prepared by the reaction of CIF with CF₃N=CF₂,⁷ COF₂,^{13,14} (CF₃)₃COK,¹⁵⁻¹⁷ and SOF₄,^{13,18} respectively. The perfluoroazaalkenes, CF₃N=CF₂,⁷ C₂F₅N=CF₂,⁷ and C₃F₇N=CF₂⁸ are also prepared by literature methods.

General Procedures. A conventional vacuum system, consisting of a Pyrex glass vacuum line fitted with Teflon needle stopcocks and equipped with Heise Bourdon tube and Televac thermocouple gauges, is used to handle gases and volatile liquids. Standard *PVT* techniques are used to quantitate starting materials or products. Fractional condensation (trap-to-trap distillation) is used for the purification of products. Infrared spectra are recorded on a Perkin-Elmer 1710 FT-IR spectrometer using a 10-cm glass cell equipped with KBr windows.

- (13) Gould, D. E.; Anderson, L. R.; Young, D. E.; Fox, W. B. J. Am. Chem. Soc. 1969, 91, 1310.
- (14) Schack, C. J.; Maya, W. J. Am. Chem. Soc. 1969, 91, 2902.
- (15) Kotun, S. P.; Anderson, J. D. O.; DesMarteau, D. D. J. Org. Chem. 1992, 57, 1124.
- (16) Patel, N. R.; Kirchmeier, R. L. Inorg. Chem. 1992, 31, 2537.
- (17) Young, D. E.; Anderson, L. R.; Gould, D. E.; Fox, W. B. J. Am. Chem. Soc. 1970, 92, 2313.
- (18) Schack, C. J.; Wilson, R. D.; Muirhead, J. S.; Cohz, S. N. J. Am. Chem. Soc. 1969, 91, 2907.

¹⁹F-NMR spectra are obtained on a Bruker AC200 or AC300 FT-NMR instrument using CD₃CN or CDCl₃ as solvent. Chemical shifts are reported with respect to CFCl₃. Mass spectra are obtained with a Varian VG 7070 HS mass spectrometer by using electron impact or chemical ionization techniques. Peak assignments of the chlorine- and bromine-containing fragments are based on ³⁵Cl and ⁷⁹Br, respectively. Elemental analyses were performed by Beller Mikroanalytisches Laboratorium, Göttingen, Germany.

Preparation of the Isocyanides CF₃N≡C, CF₃CF₂N≡C (1) and CF₃CF₂CF₂N≡C (2). Into 5 mmol of triphenylphosphane, in a roundbottomed flask with a stirrer, is condensed 5 mmol of R_fN=CF₂. After a slow warmup from −196 to +25 °C, the mixture is stirred at 25 °C for 30 min. A mixture of R_fN=CF₂ and CFCl₃ can also be used. All volatile material is then removed under vacuum from the red-brown residue and distilled through a trap at −115 °C. The isocyanides can be purified further by repeated distillation through a trap at −120 °C to separate them from the byproducts CF₃CF=NCF₃ (in the case of C₂F₅NC) and C₂F₅CF=NCF₃ (in the case of C₃F₇NC). Yields range from 80−90% (R_f = CF₃), to 40−50% (R_f = C₃F₇), and to 20−30% (R_f = C₂F₅). Each of these isocyanides is a colorless liquid at low temperature and storage at −78 °C is required. Otherwise oligomerization occurs.

Properties of CF₃CF₂N=C (1). Compound 1 is isolated in a trap at -196 °C, after having passed a trap at -120 °C. Spectral data are as follows. IR (gas) (cm⁻¹): 2120 s ($\nu_{N=C}$), 1363 m, 1310 w, 1246 vs, 1196 vs, 1160 m, 1074 vs, 982 w, 930 m, 922 m, 889 w, 692 m. ¹⁹F NMR (CD₃CN): δ -86.1 (CF₃, s); -91.0 (CF₂, t), ²J_{EN} = 13.1 Hz. MS EI [*m/e* (species), intensity]: 145 (M⁺), 2; 126 (M⁺ - F), 7; 119 (C₂F₅⁺), 15; 100 (C₂F₄⁺), 3; 76 (CF₂NC⁺), 65; 69 (CF₃⁺), 100.

Properties of CF₃CF₂CF₂N≡C (2). Compound **2** is isolated in a trap at −196 °C, after having passed a trap at −120 °C. Spectral data are as follows. IR (gas) (cm⁻¹): 2114 m (ν_{N≡C}), 1355 m, 1295 w, 1248 vs, 1215 m, 1175 m, 1129 m, 1084 w, 987 m, 960 m, 847 m, 735 m. ¹⁹F NMR (CD₃CN): δ −80.1 (CF₃, t), ⁴*J*_{F,F} = 8.5 Hz; −87.1 (CF₂N, t), ²*J*_{F,N} = ~13 Hz; −127.2 (CF₂, s). MS EI [*m/e* (species), intensity]: 195 (M⁺), 1; 169 (C₃F₇⁺), 20; 131 (C₃F₅⁺), 12; 119 (C₂F₅⁺), 51; 100 (C₂F₄⁺), 18; 76 (CF₂NC⁺), 93; 69 (CF₃⁻⁺), 100.

General Procedure for Reactions of 1 and 2 with Oxidizers. Equimolar mixtures of R_fNC and reagents are condensed into a glass vessel, warmed slowly to room temperature, and kept for 10–30 min at 25 °C. Distillation through traps at -60 to -80 °C (-110 °C in the case of C_3F_7NCO) gives pure products. Yields of the colorless liquids are approximately 90–95%.

Properties of CF₃CF₂CF₂N=CCl₂ (3). Compound **3** stops in a trap at -80 °C. Spectral data are as follows. IR (gas) (cm⁻¹): 1681/ 1662 s (ν_{N=C}), 1354 m, 1320 m, 1289 m, 1240 vs, 1206 s, 1186 s, 1137 s, 1083 w, 990 s, 925 s, 848 m, 779 m, 736 s, 678 w, 645 w, 610 w. ¹⁹F NMR (CDCl₃): δ -81.0 (CF₃, t), ⁴J_{F,F} = 8.4 Hz; -97.9 (CF₂N, qt); -129.1 (CF₂, t), ³J_{F,F} = 2.8 Hz. MS CI [*m/e* (species), intensity]: 266 (MH⁺), 59; 246 (M⁺ - F), 81; 230 (M⁺ - Cl), 80; 196 (C₃F₇-NCH⁺), 14; 185 (C₃F₆Cl⁺), 25; 169 (C₃F₇⁺), 52; 146 (M⁺ - C₂F₅), 78; 119 (C₂F₅⁺), 13; 100 (C₂F₄⁺), 16; 85 (CF₂Cl⁺), 37; 76 (CF₂NC⁺), 36; 69 (CF₃⁺), 100.

Properties of CF₃CF₂CF₂N=CBr₂ (4). Compound 4 stops in a trap at −60 °C. Spectral data are as follows. IR (gas) (cm⁻¹): 1711/ 1645 s (ν_{N=C}), 1353 s, 1322 w, 1287 w, 1242 vs, 1204 m, 1178 m, 1135 s, 1029 w, 987 s, 856 m, 834 m, 766 w, 717 m. ¹⁹F NMR (CDCl₃): δ −80.9 (CF₃, tt), ⁴J_{F,F} = 8.7 Hz, ³J_{F,F} = 1.4 Hz; −99.0 (CF₂N, qt); −128.9 (CF₂, tq), ³J_{F,F} = 3.1 Hz. MS CI [*m/e* (species), intensity]: 354 (MH⁺), 11; 334 (M⁺ − F), 14; 274 (M⁺ − Br), 85; 229 (C₃F₆Br⁺), 13; 196 (C₃F₇NCH⁺), 30; 169 (C₃F₇⁺), 79; 119 (C₂F₅⁺), 17; 100 (C₂F₄⁺), 11; 76 (CF₂NC⁺), 32; 69 (CF₃⁺), 100. Anal. Calcd for C₄Br₂F₇N: C, 13.54; F, 37.48. Found: C, 13.65; F, 37.2.

Properties of CF₃CF₂N=CBr₂ (5). Compound 5 stops in a trap at -60 °C. Spectral data are as follows. IR (gas) (cm⁻¹): 1715/1652/1642 s (ν_{N-C}), 1384 w, 1351 m, 1236 vs, 1192 s, 1181 s, 1168 s, 1132 m, 1084 s, 1029 s, 988 w, 852 s, 784 w, 737 m, 703 m, 664 w, 627 w. ¹⁹F NMR (CDCl₃): δ -85.9 (CF₃, t), ³J_{F,F} = 1.1 Hz; -102.8 (CF₂, q). MS CI [*m/e* (species), intensity]: 304 (MH⁺), 9; 284 (M⁺ - F), 15; 224 (M⁺ - Br), 88; 146 (C₂F₅NCH⁺), 56; 119 (C₂F₅⁺), 94; 100 (C₂F₄⁺), 6; 79 (Br⁺), 13; 76 (CF₂NC⁺), 38; 69 (CF₃⁺), 100.

⁽¹²⁾ Shreeve, J. M. Adv. Inorg. Chem. Radiochem. 1983, 26, 119.

Properties of CF₃CF₂CF₂N=C(Cl)OCF₃ (6). Compound 6 stops in a trap at -70 °C. Spectral data are as follows. IR (gas) (cm⁻¹): 1726/1708 s (ν_{N=C}), 1355 m, 1332 w, 1293 s, 1247 vs, 1206 s, 1138 vs, 1031 w, 995 s, 893 m, 873 w, 857 m, 819 w, 756 m, 739 m, 676 m, 647 w, 535 w. ¹⁹F NMR (CDCl₃): δ -59.1 (CF₃O, s); -81.1 (CF₃, t), ⁴J_{F,F} = 7.9 Hz; -97.5 (CF₂N, mult.); -129.8 (CF₂, t), ³J_{F,F} = 4.1 Hz. MS CI [*m/e* (species), intensity]: 316 (MH⁺), 14; 296 (M⁺ - F), 33; 280 (M⁺ - Cl), 10; 246 (M⁺ - CF₃), 2; 230 (M⁺ - OCF₃), 4; 212 (C₃F₇NCOH⁺), 7; 196 (C₃F₇NCH⁺), 26; 192 (C₃F₆NCO⁺), 17; 169 (C₃F₇⁺), 15; 119 (C₂F₅⁺), 11; 100 (C₂F₄⁺), 7; 86 (CF₃OH⁺), 100; 76 (CF₂NC⁺), 7; 69 (CF₃⁺), 89.

Properties of CF₃CF₂N=C(Cl)OCF₃ (7). Compound 7 stops in a trap at -80 °C. Spectral data are as follows. IR (gas) (cm⁻¹): 1727/ 1709 s (ν_{N=C}), 1390 w, 1356 m, 1295 s, 1258 vs, 1237 vs, 1199 s, 1172 s, 1147 vs, 1079 s, 901 m, 878 w, 766 w, 736 m, 677 m, 585 w. ¹⁹F NMR (CDCl₃): δ -59.2 (CF₃O, s); -86.9 (CF₃, s); -101.1 (CF₂, s). MS CI [*m/e* (species), intensity]: 266 (MH⁺), 2; 246 (MH⁺ - F), 7; 196 (M⁺ - CF₃), 3; 180 (M⁺ - OCF₃), 4; 162 (C₂F₅NCOH⁺), 2; 146 (C₂F₅NCH⁺), 4; 119 (C₂F₅⁺), 10; 86 (CF₃OH⁺), 100; 69 (CF₃⁺), 22.

Properties of CF₃CF₂CF₂N=C(Cl)OC(CF₃)₃ (8). Compound **8** stops in a trap at -60 °C. Spectral data are as follows. IR (gas) (cm⁻¹): 1730 s/1715 s/1698 m (ν_{N-C}), 1379 m, 1353 m, 1282 vs, 1247 vs, 1208 s, 1159 s, 1138 s, 1122 s, 1072 w, 1009 m, 981 s, 842 s, 754 m, 733 m, 539 w. ¹⁹F NMR (CDCl₃): δ -68.6 ((CF₃)₃C, s); -81.0 (CF₃, t), ⁴J_{F,F} = 9.0 Hz; -97.1 (CF₂N, q); -128.9 (CF₂, s). MS CI [*m/e* (species), intensity]: 466 (MH⁺), 16; 446 (M⁺ - F), 75; 430 (M⁺ - Cl), 28; 346 (M⁺ - C₂F₅), 38; 258 (M⁺ - 3CF₃), 5; 230 (M⁺ - (CF₃)₃-CO), 7; 169 (C₃F₇⁺), 23; 131 (C₃F₅⁺) 15; 119 (C₂F₅⁺), 6; 100 (C₂F₄⁺), 8; 85 (CF₃O⁺), 12; 69 (CF₃⁺), 100.

Properties of CF₃CF₂CF₂N=C(Cl)OSF₅ (9). Compound 9 stops in a trap at -70 °C. Spectral data are as follows. IR (gas) (cm⁻¹): 1723/1698 s (ν_{N-C}), 1354 m, 1329 w, 1246 vs, 1203 s, 1158 s, 1136 s, 1114 s, 992 m, 940 vs, 865 s, 757 m, 738 m, 600 s. ¹⁹F NMR (CDCl₃): δ 69.5 (SF₄, c), ² $J_{F,F}$ = 156.5 Hz; 60.2 (SF, c); -81.0 (CF₃, t), ⁴ $J_{F,F}$ = 8.0 Hz; -97.7 (CF₂N, br); -129.6 (CF₂, t), ³ $J_{F,F}$ = 4.0 Hz. MS CI [*m/e* (species), intensity]: 354 (M⁺ - F), 3; 254 (M⁺ - C₂F₅), 6; 230 (M⁺ - OSF₅), 34; 212 (C₃F₆NCClH⁺), 36; 192 (C₃F₆NCO⁺), 73; 169 (C₃F₇⁺), 17; 142 (C₂F₄NCO⁺), 8; 127 (SF₅⁺), 100; 119 (C₂F₅⁺), 6; 105 (SOF₃⁺), 7; 100 (C₂F₄⁺), 3; 92 (CF₂NCO⁺), 94; 89 (SF₃⁺), 80; 69 (CF₃⁺), 29. Anal. Calcd for C₄F₁₂ClNOS: C, 12.86; F, 61.03. Found: C, 13.33; F, 59.5.

Properties of CF₃CF₂CF₂N(CI)CF₂CI (10). Compound (10) stops in a trap at -80 °C. Spectral data are as follows. IR (gas) (cm⁻¹): 1352 m, 1306 m, 1255 vs, 1205 s, 1161 s, 1139 s, 1053 s, 1038 s, 993 m, 888 w, 845 w, 809 m, 740 m. ¹⁹F NMR (CDCl₃): δ -35.0 (CF₂-Cl, tt), ²J_{F,F} = 21.5 Hz, ⁴J_{F,F} = 5.5 Hz; -81.3 (CF₃, t), ⁴J_{F,F} = 9.0 Hz; -97.5 (CF₂N, mult); -129.0 (CF₂, t), ³J_{F,F} = 4.2 Hz. MS CI [*m/e* (species), intensity]: 266 (C₃F₇NCICHCl⁺), 13; 246 (C₃F₆NCICCl⁺), 25; 230 (C₃F₇NCCl⁺), 26; 196 (C₂F₄NCICCl⁺), 7; 185 (C₃F₆Cl⁺), 10; 169 (C₃F₇⁺), 24; 146 (CF₂NCICCl⁺), 33; 119 (C₂F₅⁺), 15; 85 (CF₂-Cl⁺), 22; 69 (CF₃⁺), 100.

Acknowledgment. We are grateful for the support of the National Science Foundation (CHE-9003509), and the Air Force Office of Scientific Research (91-0189). We thank Dr. Gary Knerr for obtaining the mass spectral data.

IC9414841